Topics in Learning Theory

Lecture 5: Regularization



Topics

Linear classification and regularization
Rademacher complexity analysis for linear regularization
L., Covering number for linear regularization

Regularization and stability



Linear Classifier

f(z) = wTz, where z € R?
classificaiton rule: y = sign(w!x)

VC theory: without restriction, the complexity term is O(d1nn/n) (realizable
case) or O(4/d/n) (unrealizable case)

Can we do better? under margin condition?

— better estimation of L., covering or rademacher complexity
— key: complexity independent (or weakly dependent) of d
— works on modern datasets with large dimensionality.



Regularization conditions

e Restrict the size of w: put additional constraint

g(w) <a

e Example regularization conditions:

- 2:norm g(w) = [Jull; |

~ Lo: g(w) = |lwllo = |{j : w; # 0}| (sparsity)

— 1-norm g(w) = ||w||; (approximate sparsity)

~ Ly g(w) = [w],

— entropy: w; > 0, ) ,w; =1,and g(w) = > wjlnw;/u;, where ), u; =1
(15 > 0)



Covering number bounds for regularized linear classifiers

e How to measure the complexity of regularized linear function f(z) = wlz :
g(w) < a?

e Bound empirical L..-covering number with g-norm regularization

e p — ¢ norm regularization
If ||z||, < band ||w||, <a,where2<p<oocand1l/p+1/q=1,then Ve >0,

2[?2
In Noo (H, €,1) < 36(p — 1) In[2[4ab/e + 2]n + 1],
€

— independent of dimensionality



e Entropy regularization

Given pu such that > pu; = 1 (u; > 0) if ||z]lc < b and flwl; < a and
Zj W, lnﬁ < c (w; > 0), then Ve > 0,

360%(a® + ac)
2

InNy(H,e,n) < In[2[4ab/e + 2|n + 1].

€

e [, regularization: ||z||.c < band |w|; < a

take p; = 1/d, then entropy is upper bounded by ||w||; Ind, thus can take
c=ualnd:

o 36b%a*(1 + Ind)

InNy(H,e,n) < = In[2[4ab/e + 2|n + 1].

— Ind dependency — weak dependency on dimensionality



L..~cover Margin bound

e Consider normalized 2-norm regularization
= [lzfl2 <1
= [wllz <1

e Given any fixed \ with probability 1 — n, we have the following bound for all
feHandall~ e (0,1]:

ExyI(f(X)Y <0) < 1o

1=1

where A = 2(e* — X — 1)/,

Classification-error < const * margin-error + O(Inn/n)



e For 1-norm: a similar bound holds: ||w||; <1 and ||z|/. <1

Classification-error < const * margin-error + O(IndInn/n)

e If the data is dense, with ||z« < 1, ||z||» can be as large as V/d.

— for dense data, 1-norm regularization has weaker dependency on
dimensionality (In d) than 2-norm regularization (d)



Rademacher Complexity bounds for regularized linear
classifiers

e Assume ||z|, < aand ||w|, < b, wherep e |2,00) and 1/p+ 1/q = 1, then

J/p—Tab
N

where H = { f(x) = w3 |all, < a, ||w], < b).

R(H,S,) <

e Similar result holds for entropy/L, regularization.



Proof

Recall o; = &1 with probability 0.5, and

1 T n
R(S'n) =L, sup _Zo-zf(Xz) = Lk, sup w—ZUZXz

fernn i Jwllg<b T T

1 < b -
SbEaHEZUiXin = (Eol > X))
1=1 =1

Now, we only need to prove that

Eo|| Y oiXily < (0 —1) Y |1 Xil5.
i=1 i=1



To show this, we let f(x) = ||z|2, and note that d* f (z +tz’) /dt* < 2(p—1)||"||2.
Using Taylor expansion:

O e Xi+ X))+ FOO e X - X))
2

- f
Eo|| ZaiXng% = Ls
1=1

n—1 n—1 n—1
=E,| Y o:Xi|2+ By =1 - 1
1=1

n—1
<E,| S 0Xil2 + (p — 1)1 X2
=1

<< (p-D)D) X
1=1
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Rademacher Process Comparison Theorem

o Let ¢(f,y) be Lipschitz in f with constant v: |o(f,y) — o(f", )| < vlf — [/l
then

R(¢(H)|Sn) < yR(H|Sh).

e Can estimate the Rademacher complexity of ¢(w! z, y) using an estimate of
Rademacher complexity of w? .
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Rademacher Margin bound

Let o(f(z),y) = I(f(x)y < 0) +1(0 < f(x)y < )1 — f(x)y/7), then ¢ is
Lipschitz constant 1/~.

Assume ||z||, < aand ||w||, < b, where g € [2,00] and 1/p +1/q = 1, then

2 lab In(1
Farotr0,1) < S oty v + I [
Implying margin bound:

ZV/___Tab In(1/n)
Wn 2n

1
Ex vyl )Y <0) < —
xyI(F(X < ;

Compare to covering number bound: no Inn but cannot achieve O(1/n) rate.
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Ly Regularization

e Only a components of w are nonzeros

1
b= i _E:[ Xy, <0), st <a.
W = arg min 7; (w <0) |wllo < a

— more interpretable results
— good generalization bound in terms of sparsity
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Generalization for L, regularization

For each fixed subset of a nonzero coefficients, Sauer's lemma implies
infinity-covering of at most (en/(a 4 1))a + 1).

There are only C§ < d* possible choices of subset of nonzero coefficients
In summary, empirical covering is no more than
In Noo(H,0/S,) <alnd+ (a+ 1)In(en/(a+ 1)).

Implies statistical complexity of aInd/n

— applicable even when d > n:
— gparsity-level times 1-dimensional complexity (standard for L)
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General Linear Regularization

Goal: minimize the average loss ¢(w!'z),y) over unseen data.

A practical method: minimize observed loss:

1
W = arg min—Z¢(wTXi),Yi), s.t. g(w) < b.

Equivalent formulation (A > 0):

1
W = arg min — Z o(wh'X;),Y;) + Ag(w).

require convex ¢ and g for computational efficiency.
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Learning complexity controlled by \: test accuracy versus A
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What Regularization to use

e ||w|l2: when 2-norm of the true classifier is bounded and 2-norm of z is
bounded.

e |[w|/:: when 1-norm of the true classifier is bounded and oo-norm of z is
bounded.

— induce sparse weights (only small number of nonzero weights)
— automatic feature selection
— closest convex approximation (relaxation) to L, regularization:

o |w|lp: sparsity with good generalization bound, but non-convex
(computionally infeasible).

— current research: does [L; relaxaton gives similar generalization
performance in terms of sparsity?
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B, f

Figure 3.12: FEstimation picture for the lasso (left)
and ridge regression (right). Shown are contours of the

error and constraint functions. The solid blue areas are
the constraint regions |B1| + |B2| <t and Bi + B3 < t°,

respectively, while the red ellipses are the contours of

the least squares error function.
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Regularization and Stability

e If the loss function is convex, and regularization condition is strictly convex
then the regularized solution is stable.

— adding or removing one component does not change solution much

e Stability leads to good generalization performance: another approach to
derive learning bound

— McDiarmid’s inequalit requires stability — stability implies concentration

19



An example of stability analysis

o Let w, = arg min,[E¢(w! X,Y) + A\w?| be the true parameter

e Let @ = argmin, [t > ¢(w!X;,Y;) + Aw?] be the estimated estimated
parameter.

e Claim (numerical stability): if ¢ is convex in w, then let M =
sup |4 (wT X, Y)||| X |2, then with probability 1 — 1:

i — w.lla < M[1+/2In(1/n)]/(Av/n).
— this stability result implies good generalization performance:

Eo(wTX,Y) ~ E¢(wlX,Y).
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Proof

From
_Z¢ (0" X;,Y;) + Ad® <~ qu (w, X3, Yi) + A,

1 R ~
=" (@07 X,, Vi) = $(wl X, Yi) = ¢4 (wl Xe, YOXT (i = w.)
i >0

1



Thus |
A — w,3 < II5 D (Wl X, Vi) X, + 20w, |z — w2

Since E¢}(wl' X, Y)X + 2 \w, = 0, we have
A 1 / T / T
Al —wll2 < > (wi X, V) Xi — B¢ (w) X),Y) X

Now apply McDiarmid’s inequality, we have with probability 1 — n

. 1
A = il < Bl 37 6407 X5 Y Xe = B0} (T X), V)Xl + My 21/

E1/2\|—Z¢1 (w! X4, i) Xi — B¢y (w] X),Y) X5+ M\/2In(1/n)/n

<p!/? Z Hﬁgbll(w*TXiv Vi) Xill3 + My/2In(1/n)/n < M(1+ /21n(1/n))/Vn.
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