
Topics in Learning Theory

Lecture 5: Regularization



Topics

• Linear classification and regularization

• Rademacher complexity analysis for linear regularization

• L∞ Covering number for linear regularization

• Regularization and stability
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Linear Classifier

• f(x) = wTx, where x ∈ Rd

• classificaiton rule: y = sign(wTx)

• VC theory: without restriction, the complexity term is O(d lnn/n) (realizable
case) or O(

√
d/n) (unrealizable case)

• Can we do better? under margin condition?

– better estimation of L∞ covering or rademacher complexity
– key: complexity independent (or weakly dependent) of d
– works on modern datasets with large dimensionality.
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Regularization conditions

• Restrict the size of w: put additional constraint

g(w) ≤ a

• Example regularization conditions:

– 2-norm g(w) = ‖w‖2

– L0: g(w) = ‖w‖0 = |{j : wj 6= 0}| (sparsity)
– 1-norm g(w) = ‖w‖1 (approximate sparsity)
– Lp: g(w) = ‖w‖p

– entropy: wj ≥ 0,
∑

j wj = 1, and g(w) =
∑

j wj lnwj/µj, where
∑

j µj = 1
(µj ≥ 0)
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Covering number bounds for regularized linear classifiers

• How to measure the complexity of regularized linear function f(x) = wTx :
g(w) ≤ a?

• Bound empirical L∞-covering number with q-norm regularization

• p− q norm regularization

If ‖x‖p ≤ b and ‖w‖q ≤ a, where 2 ≤ p < ∞ and 1/p + 1/q = 1, then ∀ε > 0,

lnN∞(H, ε, n) ≤ 36(p− 1)
a2b2

ε2
ln[2d4ab/ε + 2en + 1].

– independent of dimensionality
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• Entropy regularization

Given µ such that
∑

j µj = 1 (µj ≥ 0) if ‖x‖∞ ≤ b and ‖w‖1 ≤ a and∑
j wj ln wj

µj‖w‖1
≤ c (wj ≥ 0), then ∀ε > 0,

lnN∞(H, ε, n) ≤ 36b2(a2 + ac)
ε2

ln[2d4ab/ε + 2en + 1].

• L1 regularization: ‖x‖∞ ≤ b and ‖w‖1 ≤ a

take µj = 1/d, then entropy is upper bounded by ‖w‖1 ln d, thus can take
c = a ln d:

lnN∞(H, ε, n) ≤ 36b2a2(1 + ln d)
ε2

ln[2d4ab/ε + 2en + 1].

– ln d dependency — weak dependency on dimensionality
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L∞-cover Margin bound

• Consider normalized 2-norm regularization

– ‖x‖2 ≤ 1
– ‖w‖2 ≤ 1

• Given any fixed λ with probability 1 − η, we have the following bound for all
f ∈ H and all γ ∈ (0, 1]:

EX,Y I(f(X)Y ≤ 0) ≤ 1
(1− α)n

n∑
i=1

I(f(Xi)Yi ≤ γ) + C
ln(n/η) + ln(1/γ)

λ(1− α)nγ2
,

where λ = 2(eλ − λ− 1)/λ.

Classification-error ≤ const * margin-error + O(lnn/n)
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• For 1-norm: a similar bound holds: ‖w‖1 ≤ 1 and ‖x‖∞ ≤ 1

Classification-error ≤ const * margin-error + O(ln d lnn/n)

• If the data is dense, with ‖x‖∞ ≤ 1, ‖x‖2 can be as large as
√

d.

– for dense data, 1-norm regularization has weaker dependency on
dimensionality (ln d) than 2-norm regularization (d)
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Rademacher Complexity bounds for regularized linear
classifiers

• Assume ‖x‖p ≤ a and ‖w‖q ≤ b, where p ∈ [2,∞) and 1/p + 1/q = 1, then

R(H, Sn) ≤
√

p− 1ab√
n

.

where H = {f(x) = wTx; ‖x‖p ≤ a, ‖w‖q ≤ b}.

• Similar result holds for entropy/L1 regularization.
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Proof

Recall σi = ±1 with probability 0.5, and

R(Sn) =Eσ sup
f∈H

1
n

n∑
i=1

σif(Xi) = Eσ sup
‖w‖q≤b

wT

n

n∑
i=1

σiXi

≤bEσ‖
1
n

n∑
i=1

σiXi‖p ≤
b

n
(Eσ‖

n∑
i=1

σiXi‖2
p)

1/2

Now, we only need to prove that

Eσ‖
n∑

i=1

σiXi‖2
p ≤ (p− 1)

n∑
i=1

‖Xi‖2
p.
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To show this, we let f(x) = ‖x‖2
p, and note that d2f(x+tx′)/dt2 ≤ 2(p−1)‖x′‖2

p.
Using Taylor expansion:

Eσ‖
n∑

i=1

σiXi‖2
p = Eσ

f(
∑n−1

i=1 σiXi + Xn) + f(
∑n−1

i=1 σiXi −Xn)
2

=Eσ‖
n−1∑
i=1

σiXi‖2
p + Eσ

d2

dt2
f(

∑n−1
i=1 σiXi + tXn) + f(

∑n−1
i=1 σiXi − tXn)

4

≤Eσ‖
n−1∑
i=1

σiXi‖2
p + (p− 1)‖Xn‖2

p

≤ · · · ≤ (p− 1)
n∑

i=1

‖Xi‖2
p.
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Rademacher Process Comparison Theorem

• Let φ(f, y) be Lipschitz in f with constant γ: |φ(f, y) − φ(f ′, y)| ≤ γ|f − f ′|,
then

R(φ(H)|Sn) ≤ γR(H|Sn).

• Can estimate the Rademacher complexity of φ(wTx, y) using an estimate of
Rademacher complexity of wTx.
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Rademacher Margin bound

Let φ(f(x), y) = I(f(x)y ≤ 0) + I(0 ≤ f(x)y ≤ γ)(1 − f(x)y/γ), then φ is
Lipschitz constant 1/γ.

Assume ‖x‖p ≤ a and ‖w‖q ≤ b, where q ∈ [2,∞] and 1/p + 1/q = 1, then

EX,Y φ(f(X), Y ) ≤ 1
n

n∑
i=1

φ(f(Xi), Yi) +
2
√

p− 1ab

γ
√

n
+

√
ln(1/η)

2n
.

Implying margin bound:

EX,Y I(f(X)Y ≤ 0) ≤ 1
n

n∑
i=1

I(f(Xi)Yi ≤ γ) +
2
√

p− 1ab

γ
√

n
+

√
ln(1/η)

2n
.

Compare to covering number bound: no lnn but cannot achieve O(1/n) rate.
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L0 Regularization

• Only a components of w are nonzeros

ŵ =arg min
w

1
n

∑
i

I(wTXiYi ≤ 0), s.t. ‖w‖0 ≤ a.

– more interpretable results
– good generalization bound in terms of sparsity
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Generalization for L0 regularization

• For each fixed subset of a nonzero coefficients, Sauer’s lemma implies
infinity-covering of at most (en/(a + 1))(a + 1).

• There are only Ca
d ≤ da possible choices of subset of nonzero coefficients

• In summary, empirical covering is no more than

lnN∞(H, 0|Sn) ≤ a ln d + (a + 1) ln(en/(a + 1)).

• Implies statistical complexity of a ln d/n

– applicable even when d � n:
– sparsity-level times 1-dimensional complexity (standard for L0)
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General Linear Regularization

• Goal: minimize the average loss φ(wTx), y) over unseen data.

• A practical method: minimize observed loss:

ŵ =arg min
w

1
n

∑
i

φ(wTXi), Yi), s.t. g(w) ≤ b.

• Equivalent formulation (λ ≥ 0):

ŵ = arg min
w

1
n

∑
i

φ(wTXi), Yi) + λg(w).

• require convex φ and g for computational efficiency.
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Effect of Regularization

• Learning complexity controlled by λ: test accuracy versus λ
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What Regularization to use

• ‖w‖2: when 2-norm of the true classifier is bounded and 2-norm of x is
bounded.

• ‖w‖1: when 1-norm of the true classifier is bounded and ∞-norm of x is
bounded.

– induce sparse weights (only small number of nonzero weights)
– automatic feature selection
– closest convex approximation (relaxation) to L0 regularization:

• ‖w‖0: sparsity with good generalization bound, but non-convex
(computionally infeasible).

– current research: does L1 relaxaton gives similar generalization
performance in terms of sparsity?
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Regularization and Stability

• If the loss function is convex, and regularization condition is strictly convex
then the regularized solution is stable.

– adding or removing one component does not change solution much

• Stability leads to good generalization performance: another approach to
derive learning bound

– McDiarmid’s inequalit requires stability — stability implies concentration
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An example of stability analysis

• Let w∗ = arg minw[Eφ(wTX, Y ) + λw2] be the true parameter

• Let ŵ = arg minw[1n
∑

i φ(wTXi, Yi) + λw2] be the estimated estimated
parameter.

• Claim (numerical stability): if φ is convex in w, then let M =
sup |φ′1(wTX, Y )|‖X‖2, then with probability 1− η:

‖ŵ − w∗‖2 ≤ M [1 +
√

2 ln(1/η)]/(λ
√

n).

– this stability result implies good generalization performance:

Eφ(ŵTX, Y ) ≈ Eφ(wT
∗ X, Y ).

20



Proof

From
1
n

∑
i

φ(ŵTXi, Yi) + λŵ2 ≤ 1
n

∑
i

φ(wT
∗ Xi, Yi) + λw2

∗,

we have

1
n

∑
i

(φ(ŵTXi, Yi)− φ(wT
∗ Xi, Yi)− φ′1(w

T
∗ Xi, Yi)XT

i (ŵ − w∗))︸ ︷︷ ︸
≥0

+ λ (ŵ2 − w2
∗ − 2wT

∗ (ŵ − w∗))︸ ︷︷ ︸
(ŵ−w∗)2

≤− (
1
n

∑
i

φ′1(w
T
∗ Xi, Yi)Xi + 2λw∗)T (ŵ − w∗)
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Thus
λ‖ŵ − w∗‖2

2 ≤ ‖1
n

∑
i

φ′1(w
T
∗ Xi, Yi)Xi + 2λw∗‖2‖ŵ − w∗‖2.

Since Eφ′1(w
T
∗ X, Y )X + 2λw∗ = 0, we have

λ‖ŵ − w∗‖2 ≤ ‖1
n

∑
i

φ′1(w
T
∗ Xi, Yi)Xi − Eφ′1(w

T
∗ X), Y )X‖2

Now apply McDiarmid’s inequality, we have with probability 1− η:

λ‖ŵ − w∗‖2 ≤ E‖1
n

∑
i

φ′1(w
T
∗ Xi, Yi)Xi − Eφ′1(w

T
∗ X), Y )X‖2 + M

√
2 ln(1/η)/n

≤E1/2‖1
n

∑
i

φ′1(w
T
∗ Xi, Yi)Xi − Eφ′1(w

T
∗ X), Y )X‖2

2 + M
√

2 ln(1/η)/n

≤E1/2
∑

i

‖1
n
φ′1(w

T
∗ Xi, Yi)Xi‖2

2 + M
√

2 ln(1/η)/n ≤ M(1 +
√

2 ln(1/η))/
√

n.
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