Topics in Learning Theory

Lecture 5: Regularization

Topics

- Linear classification and regularization
- Rademacher complexity analysis for linear regularization
- L_{∞} Covering number for linear regularization
- Regularization and stability

Linear Classifier

- $f(x) = w^T x$, where $x \in R^d$
- classification rule: $y = sign(w^T x)$
- VC theory: without restriction, the complexity term is $O(d \ln n/n)$ (realizable case) or $O(\sqrt{d/n})$ (unrealizable case)
- Can we do better? under margin condition?
 - better estimation of L_{∞} covering or rademacher complexity
 - key: complexity independent (or weakly dependent) of d
 - works on modern datasets with large dimensionality.

Regularization conditions

• Restrict the size of w: put additional constraint

 $g(w) \le a$

- Example regularization conditions:
 - 2-norm $g(w) = ||w||_2$
 - L_0 : $g(w) = ||w||_0 = |\{j : w_j \neq 0\}|$ (sparsity)
 - 1-norm $g(w) = ||w||_1$ (approximate sparsity)
 - $L_p: g(w) = ||w||_p$
 - entropy: $w_j \ge 0$, $\sum_j w_j = 1$, and $g(w) = \sum_j w_j \ln w_j / \mu_j$, where $\sum_j \mu_j = 1$ $(\mu_j \ge 0)$

Covering number bounds for regularized linear classifiers

- How to measure the complexity of regularized linear function $f(x) = w^T x$: $g(w) \le a$?
- Bound empirical L_{∞} -covering number with q-norm regularization
- p-q norm regularization

If $||x||_p \leq b$ and $||w||_q \leq a$, where $2 \leq p < \infty$ and 1/p + 1/q = 1, then $\forall \epsilon > 0$,

$$\ln N_{\infty}(\mathcal{H},\epsilon,n) \le 36(p-1)\frac{a^2b^2}{\epsilon^2}\ln[2\lceil 4ab/\epsilon+2\rceil n+1].$$

independent of dimensionality

• Entropy regularization

Given μ such that $\sum_{j} \mu_{j} = 1$ ($\mu_{j} \ge 0$) if $||x||_{\infty} \le b$ and $||w||_{1} \le a$ and $\sum_{j} w_{j} \ln \frac{w_{j}}{\mu_{j} ||w||_{1}} \le c$ ($w_{j} \ge 0$), then $\forall \epsilon > 0$,

$$\ln \mathcal{N}_{\infty}(\mathcal{H}, \epsilon, n) \leq \frac{36b^2(a^2 + ac)}{\epsilon^2} \ln[2\lceil 4ab/\epsilon + 2\rceil n + 1].$$

• L_1 regularization: $||x||_{\infty} \leq b$ and $||w||_1 \leq a$

take $\mu_j = 1/d$, then entropy is upper bounded by $||w||_1 \ln d$, thus can take $c = a \ln d$:

$$\ln \mathcal{N}_{\infty}(\mathcal{H}, \epsilon, n) \leq \frac{36b^2a^2(1+\ln d)}{\epsilon^2} \ln[2\lceil 4ab/\epsilon + 2\rceil n + 1].$$

- $\ln d$ dependency — weak dependency on dimensionality

L_∞ -cover Margin bound

- Consider normalized 2-norm regularization
 - $\|x\|_2 \le 1$
 - $\|w\|_2 \le 1$
- Given any fixed λ with probability 1η , we have the following bound for all $f \in \mathcal{H}$ and all $\gamma \in (0, 1]$:

$$\mathbf{E}_{X,Y}I(f(X)Y \le 0) \le \frac{1}{(1-\alpha)n} \sum_{i=1}^{n} I(f(X_i)Y_i \le \gamma) + C\frac{\ln(n/\eta) + \ln(1/\gamma)}{\lambda(1-\alpha)n\gamma^2},$$

where $\lambda = 2(e^{\lambda} - \lambda - 1)/\lambda$.

Classification-error \leq const * margin-error + $O(\ln n/n)$

- For 1-norm: a similar bound holds: $||w||_1 \le 1$ and $||x||_{\infty} \le 1$ Classification-error \le const * margin-error + $O(\ln d \ln n/n)$
- If the data is dense, with $||x||_{\infty} \leq 1$, $||x||_2$ can be as large as \sqrt{d} .
 - for dense data, 1-norm regularization has weaker dependency on dimensionality $(\ln d)$ than 2-norm regularization (d)

Rademacher Complexity bounds for regularized linear classifiers

• Assume $||x||_p \le a$ and $||w||_q \le b$, where $p \in [2, \infty)$ and 1/p + 1/q = 1, then

$$R(\mathcal{H}, S_n) \le \frac{\sqrt{p-1}ab}{\sqrt{n}}$$

where $\mathcal{H} = \{ f(x) = w^T x; \|x\|_p \le a, \|w\|_q \le b \}.$

• Similar result holds for entropy/ L_1 regularization.

Proof

Recall $\sigma_i = \pm 1$ with probability 0.5, and

$$R(S_n) = E_{\sigma} \sup_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^n \sigma_i f(X_i) = E_{\sigma} \sup_{\|w\|_q \le b} \frac{w^T}{n} \sum_{i=1}^n \sigma_i X_i$$
$$\leq b E_{\sigma} \left\| \frac{1}{n} \sum_{i=1}^n \sigma_i X_i \right\|_p \le \frac{b}{n} (E_{\sigma} \left\| \sum_{i=1}^n \sigma_i X_i \right\|_p^2)^{1/2}$$

Now, we only need to prove that

$$E_{\sigma} \| \sum_{i=1}^{n} \sigma_i X_i \|_p^2 \le (p-1) \sum_{i=1}^{n} \| X_i \|_p^2.$$

To show this, we let $f(x) = ||x||_p^2$, and note that $d^2 f(x+tx')/dt^2 \le 2(p-1)||x'||_p^2$. Using Taylor expansion:

$$E_{\sigma} \| \sum_{i=1}^{n} \sigma_{i} X_{i} \|_{p}^{2} = E_{\sigma} \frac{f(\sum_{i=1}^{n-1} \sigma_{i} X_{i} + X_{n}) + f(\sum_{i=1}^{n-1} \sigma_{i} X_{i} - X_{n})}{2}$$

$$= E_{\sigma} \| \sum_{i=1}^{n-1} \sigma_{i} X_{i} \|_{p}^{2} + E_{\sigma} \frac{d^{2}}{dt^{2}} \frac{f(\sum_{i=1}^{n-1} \sigma_{i} X_{i} + tX_{n}) + f(\sum_{i=1}^{n-1} \sigma_{i} X_{i} - tX_{n})}{4}$$

$$\leq E_{\sigma} \| \sum_{i=1}^{n-1} \sigma_{i} X_{i} \|_{p}^{2} + (p-1) \| X_{n} \|_{p}^{2}$$

$$\leq \dots \leq (p-1) \sum_{i=1}^{n} \| X_{i} \|_{p}^{2}.$$

Rademacher Process Comparison Theorem

• Let $\phi(f, y)$ be Lipschitz in f with constant γ : $|\phi(f, y) - \phi(f', y)| \le \gamma |f - f'|$, then $R(\phi(\mathcal{H})|S_n) \le \gamma R(\mathcal{H}|S_n).$

 Can estimate the Rademacher complexity of \(\phi(w^T x, y)\) using an estimate of Rademacher complexity of \(w^T x.\)

Rademacher Margin bound

Let $\phi(f(x), y) = I(f(x)y \le 0) + I(0 \le f(x)y \le \gamma)(1 - f(x)y/\gamma)$, then ϕ is Lipschitz constant $1/\gamma$.

Assume $||x||_p \le a$ and $||w||_q \le b$, where $q \in [2,\infty]$ and 1/p + 1/q = 1, then

$$E_{X,Y}\phi(f(X),Y) \le \frac{1}{n} \sum_{i=1}^{n} \phi(f(X_i),Y_i) + \frac{2\sqrt{p-1}ab}{\gamma\sqrt{n}} + \sqrt{\frac{\ln(1/\eta)}{2n}}.$$

Implying margin bound:

$$E_{X,Y}I(f(X)Y \le 0) \le \frac{1}{n} \sum_{i=1}^{n} I(f(X_i)Y_i \le \gamma) + \frac{2\sqrt{p-1}ab}{\gamma\sqrt{n}} + \sqrt{\frac{\ln(1/\eta)}{2n}}.$$

Compare to covering number bound: no $\ln n$ but cannot achieve O(1/n) rate.

L_0 Regularization

• Only a components of w are nonzeros

$$\hat{w} = \arg\min_{w} \frac{1}{n} \sum_{i} I(w^T X_i Y_i \le 0), \quad \text{ s.t. } \|w\|_0 \le a.$$

- more interpretable results
- good generalization bound in terms of sparsity

Generalization for L_0 regularization

- For each fixed subset of *a* nonzero coefficients, Sauer's lemma implies infinity-covering of at most $(en/(a+1))^{(a+1)}$.
- There are only $C_d^a \leq d^a$ possible choices of subset of nonzero coefficients
- In summary, empirical covering is no more than

 $\ln N_{\infty}(\mathcal{H}, 0|S_n) \le a \ln d + (a+1) \ln(en/(a+1)).$

- Implies statistical complexity of $a \ln d/n$
 - applicable even when $d \gg n$:
 - sparsity-level times 1-dimensional complexity (standard for L_0)

General Linear Regularization

- Goal: minimize the average loss $\phi(w^T x), y)$ over unseen data.
- A practical method: minimize observed loss:

$$\hat{w} = \arg\min_{w} \frac{1}{n} \sum_{i} \phi(w^T X_i), Y_i), \quad \text{ s.t. } g(w) \le b.$$

• Equivalent formulation ($\lambda \ge 0$):

$$\hat{w} = \arg\min_{w} \frac{1}{n} \sum_{i} \phi(w^T X_i), Y_i) + \lambda g(w).$$

• require convex ϕ and g for computational efficiency.

Effect of Regularization

• Learning complexity controlled by λ : test accuracy versus λ

What Regularization to use

- $||w||_2$: when 2-norm of the true classifier is bounded and 2-norm of x is bounded.
- $||w||_1$: when 1-norm of the true classifier is bounded and ∞ -norm of x is bounded.
 - induce sparse weights (only small number of nonzero weights)
 - automatic feature selection
 - closest convex approximation (relaxation) to L_0 regularization:
- $||w||_0$: sparsity with good generalization bound, but non-convex (computionally infeasible).
 - current research: does L_1 relaxaton gives similar generalization performance in terms of sparsity?

Figure 3.12: Estimation picture for the lasso (left) and ridge regression (right). Shown are contours of the error and constraint functions. The solid blue areas are the constraint regions $|\beta_1| + |\beta_2| \le t$ and $\beta_1^2 + \beta_2^2 \le t^2$, respectively, while the red ellipses are the contours of the least squares error function.

Regularization and Stability

- If the loss function is convex, and regularization condition is strictly convex then the regularized solution is stable.
 - adding or removing one component does not change solution much
- Stability leads to good generalization performance: another approach to derive learning bound
 - McDiarmid's inequalit requires stability stability implies concentration

An example of stability analysis

- Let $w_* = \arg \min_w [E\phi(w^T X, Y) + \lambda w^2]$ be the true parameter
- Let $\hat{w} = \arg \min_{w} [\frac{1}{n} \sum_{i} \phi(w^{T} X_{i}, Y_{i}) + \lambda w^{2}]$ be the estimated estimated parameter.
- Claim (numerical stability): if ϕ is convex in w, then let $M = \sup |\phi'_1(w^T X, Y)| ||X||_2$, then with probability 1η :

$$\|\hat{w} - w_*\|_2 \le M[1 + \sqrt{2\ln(1/\eta)}]/(\lambda\sqrt{n}).$$

- this stability result implies good generalization performance:

$$E\phi(\hat{w}^T X, Y) \approx E\phi(w_*^T X, Y).$$

Proof

From $\frac{1}{n}\sum_{i}\phi(\hat{w}^{T}X_{i},Y_{i}) + \lambda\hat{w}^{2} \leq \frac{1}{n}\sum_{i}\phi(w_{*}^{T}X_{i},Y_{i}) + \lambda w_{*}^{2},$

we have

$$\frac{1}{n} \sum_{i} \underbrace{(\phi(\hat{w}^{T}X_{i}, Y_{i}) - \phi(w_{*}^{T}X_{i}, Y_{i}) - \phi_{1}'(w_{*}^{T}X_{i}, Y_{i})X_{i}^{T}(\hat{w} - w_{*}))}_{\geq 0}_{\geq 0} \\ + \lambda \underbrace{(\hat{w}^{2} - w_{*}^{2} - 2w_{*}^{T}(\hat{w} - w_{*}))}_{(\hat{w} - w_{*})^{2}}_{(\hat{w} - w_{*})^{2}}$$
$$\leq - (\frac{1}{n} \sum_{i} \phi_{1}'(w_{*}^{T}X_{i}, Y_{i})X_{i} + 2\lambda w_{*})^{T}(\hat{w} - w_{*})$$

21

Thus

$$\lambda \|\hat{w} - w_*\|_2^2 \le \|\frac{1}{n} \sum_i \phi_1'(w_*^T X_i, Y_i) X_i + 2\lambda w_*\|_2 \|\hat{w} - w_*\|_2.$$

Since $E\phi'_1(w^T_*X, Y)X + 2\lambda w_* = 0$, we have

$$\lambda \| \hat{w} - w_* \|_2 \le \| \frac{1}{n} \sum_i \phi_1'(w_*^T X_i, Y_i) X_i - E \phi_1'(w_*^T X), Y) X \|_2$$

Now apply McDiarmid's inequality, we have with probability $1 - \eta$:

$$\begin{split} \lambda \| \hat{w} - w_* \|_2 &\leq E \| \frac{1}{n} \sum_i \phi_1'(w_*^T X_i, Y_i) X_i - E \phi_1'(w_*^T X), Y) X \|_2 + M \sqrt{2 \ln(1/\eta)/n} \\ &\leq E^{1/2} \| \frac{1}{n} \sum_i \phi_1'(w_*^T X_i, Y_i) X_i - E \phi_1'(w_*^T X), Y) X \|_2^2 + M \sqrt{2 \ln(1/\eta)/n} \\ &\leq E^{1/2} \sum_i \| \frac{1}{n} \phi_1'(w_*^T X_i, Y_i) X_i \|_2^2 + M \sqrt{2 \ln(1/\eta)/n} \leq M (1 + \sqrt{2 \ln(1/\eta)}) / \sqrt{n}. \end{split}$$

References

• L_{∞} covering number bounds for linear regularization:

T. Zhang. Covering number bounds of certain regularized linear function classes. *Journal of Machine Learning Research*, 2:527–550, 2002.

• Rademacher complexity bounds for linear regularization:

R. Meir and T. Zhang. Generalization error bounds for Bayesian mixture algorithms. *Journal of Machine Learning Research*, 4:839–860, 2003.